Better bounds on online unit clustering
نویسندگان
چکیده
منابع مشابه
Better Bounds on Online Unit Clustering
Unit Clustering is the problem of dividing a set of points from a metric space into a minimal number of subsets such that the points in each subset are enclosable by a unit ball. We continue work initiated by Chan and Zarrabi-Zadeh on determining the competitive ratio of the online version of this problem. For the one-dimensional case, we develop a deterministic algorithm, improving the best kn...
متن کاملOnline unit clustering: Variations on a theme
Online unit clustering is a clustering problem where classification of points is done in an online fashion, but the exact location of clusters can be modified dynamically. We study several variants and generalizations of the online unit clustering problem, which are inspired by variants of packing and scheduling problems in the literature.
متن کاملOnline unit clustering in higher dimensions
We revisit the online Unit Clustering problem in higher dimensions: Given a set of n points in R, that arrive one by one, partition the points into clusters (subsets) of diameter at most one, so as to minimize the number of clusters used. In this paper, we work in R using the L∞ norm. We show that the competitive ratio of any algorithm (deterministic or randomized) for this problem must depend ...
متن کاملOnline Stochastic Matching: New Algorithms with Better Bounds
We consider variants of the online stochastic bipartite matching problem motivated by Internet advertising display applications, as introduced in Feldman et al. [6]. In this setting, advertisers express specific interests into requests for impressions of different types. Advertisers are fixed and known in advance while requests for impressions come online. The task is to assign each request to ...
متن کاملOpen Problem: Better Bounds for Online Logistic Regression
Known algorithms applied to online logistic regression on a feasible set of L2 diameter D achieve regret bounds like O(e log T ) in one dimension, but we show a bound of O( √ D + log T ) is possible in a binary 1-dimensional problem. Thus, we pose the following question: Is it possible to achieve a regret bound for online logistic regression that is O(poly(D) log(T ))? Even if this is not possi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2013
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2013.07.008